收藏奔跑网 奔跑网首页 简笔画大全儿童免费资源 - 分享互联网免费资源,关注最新QQ活动资讯
热门: 在这里搜索...  as  色戒  知网  xxx  bylib
当前位置:主页 > 知识资源 > 详情页

数学手抄报内容

发布时间:2015-01-03 11:54编辑:bp123来源:奔跑网

有关数学手抄报内容,数学手抄报内容大全,最新的数学手抄报内容简单抄写:
 
数学的起源:
 
数学是一门最古老的学科,它的起源可以上溯到一万多年以前。但是,公元1000年以前的资料留存下来的极少。迄今所知,只有在古代埃及和巴比伦发现了比较系统的数学文献。
    远在1 万5千年前人类就已经能相当逼真地描绘出人和动物的形象。这是萌发图形意识的最早证据。后来就逐渐开始了对圆形和直线形的追求,因而成为数学图形的最早的原型。在日常生活和生产实践中又逐渐产生了计数意识和计数系统,人类摸索过多种记数方法,有开始的结绳记数,用石块记数,语言点数进一步用符号,逐步发展到今天我们所用的数字。图形意识和计数意识发展到一定程度,又产生了度量意识。
    这一系列的发展演变逐渐形成了今天我们所熟悉的完整的数学这一门学科,它包括算术、几何、代数、三角、微积分、统计和概率(其实它一开始是人们为了钻研赌博而来的呢)……等等各个分支,而且还在不断发展下去。
 
数学的经典例题:
 
通项都告你了: 
h(n)=c(2n,n)/(n+1) 
Catalan数h(n)与h(n-1)之间的关系你写不出来??? 
h(n)= h(0)*h(n-1) + h(1)*h(n-2) + ... + h(n-1)h(0) 是用生成函数解决的…… 
 
生成函数(也有叫做“母函数”的,但是我觉得母函数不太好听)是说,构造这么一个多项式函数g(x),使得x的n次方系数为f(n)。 
生成函数最绝妙的是,某些生成函数可以化简为一个很简单的函数。也就是说,不一定每个生成函数都是用一长串多项式来表示的。比如,这个函数f(n)=1 (n当然是属于自然数的),它的生成函数就应该是g(x)=1+x+x^2+x^3+x^4+...(每一项都是一,即使n=0时也有x^0系数为1,所以有常数项)。再仔细一看,这就是一个有无穷多项的等比数列求和嘛。如果-1<x<1,那么g(x)就等于1/(1-x)了。在研究生成函数时,我们都假设级数收敛,因为生成函数的x没有实际意义,我们可以任意取值。于是,我们就说,f(n)=1的生成函数是g(x)=1/(1-x)。 
 
我们举一个例子说明,一些具有实际意义的组合问题也可以用像这样简单的一个函数全部表示出来。 
考虑这个问题:从二班选n个MM出来有多少种选法。学过简单的排列与组合的同学都知道,答案就是C(4,n)。也就是说。从n=0开始,问题的答案分别是1,4,6,4,1,0,0,0,...(从4个MM中选出4个以上的人来方案数当然为0喽)。那么它的生成函数g(x)就应该是g(x)=1+4x+6x^2+4x^3+x^4。这不就是……二项式展开吗?于是,g(x)=(1+x)^4。 
你或许应该知道,(1+x)^k=C(k,0)x^0+C(k,1)x^1+...+C(k,k)x^k;但你或许不知道,即使k为负数和小数的时候,也有类似的结论:(1+x)^k=C(k,0)x^0+C(k,1)x^1+...+C(k,k)x^k+C(k,k+1)x^(k+1)+C(k,k+2)x^(k+2)+...(一直加到无穷;式子看着很别扭,自己写到草稿纸上吧,毕竟这里输入数学式子很麻烦)。其中,广义的组合数C(k,i)就等于k(k-1)(k-2)(k-i+1)/i!,比如C(4,6)=4*3*2*1*0*(-1)/6!=0,再比如C(-1.4,2)=(-1.4)*(-2.4)/2!=1.68。后面这个就叫做牛顿二项式定理。当k为整数时,所有i>k时的C(k,i)中分子都要“越过”0这一项,因此后面C(k,k+1),C(k,k+2)之类的都为0了,与我们的经典二项式定理结论相同;不同的是,牛顿二项式定理中的指数k可以是任意实数。 
 
我们再举一个例子说明一些更复杂的生成函数。n=x1+x2+x3+...+xk有多少个非负整数解?这道题是学排列与组合的经典例题了。把每组解的每个数都加1,就变成n+k=x1+x2+x3+...+xk的正整数解的个数了。教材上或许会出现这么一个难听的名字叫“隔板法”:把n+k个东西排成一排,在n+k-1个空格中插入k-1个“隔板”。答案我们总是知道的,就是C(n+k-1,k-1)。它就等于C(n+k-1,n)。它关于n的生成函数是g(x)=1/(1-x)^k。这个生成函数是怎么来的呢?其实,它就是(1-x)的-k次方。把(1-x)^(-k)按照刚才的牛顿二项式展开,我们就得到了x^n的系数恰好是C(n+k-1,n),因为C(-k,n)*(-x)^n=[(-1)^n*C(n+k-1,n)]*[(-1)^n*x^n]=C(n+k-1,n)x^n。这里看晕了不要紧,后文有另一种方法可以推导出一模一样的公式。事实上,我们有一个纯组合数学的更简单的解释方法。因为我们刚才的几何级数1+x+x^2+x^3+x^4+...=1/(1-x),那么(1+x+x^2+x^3+x^4+...)^k就等于1/(1-x)^k。仔细想想k个(1+x+x^2+x^3+x^4+...)相乘是什么意思。(1+x+x^2+x^3+x^4+...)^k的展开式中,n次项的系数就是我们的答案,因为它的这个系数是由原式完全展开后k个指数加起来恰好等于n的项合并起来得到的。 
 
现在我们引用《组合数学》上暴经典的一个例题。很多书上都会有这类题。 
我们要从苹果、香蕉、橘子和梨中拿一些水果出来,要求苹果只能拿偶数个,香蕉的个数要是5的倍数,橘子最多拿4个,梨要么不拿,要么只能拿一个。问按这样的要求拿n个水果的方案数。 
结合刚才的k个(1+x+x^2+x^3+x^4+...)相乘,我们也可以算出这个问题的生成函数。 
 
引用内容 
g(x)=(1+x^2+x^4+...)(1+x^5+x^10+..)(1+x+x^2+x^3+x^4)(1+x) 
=[1/(1-x^2)]*[1/(1-x^5)]*[(1-x^5)/(1-x)]*(1+x) (前两个分别是公比为2和5的几何级数, 
第三个嘛,(1+x+x^2+x^3+x^4)*(1-x)不就是1-x^5了吗) 
=1/(1-x)^2 (约分,把一大半都约掉了) 
=(1-x)^(-2)=C(1,0)+C(2,1)x+C(3,2)x^2+C(4,3)x^3... (参见刚才对1/(1-x)^k的展开) 
=1+2x+3x^2+4x^3+5x^4+.... 
 
于是,拿n个水果有n+1种方法。我们利用生成函数,完全使用代数手段得到了答案! 
如果你对1/(1-x)^k的展开还不熟悉,我们这里再介绍一个更加简单和精妙的手段来解释1/(1-x)^2=1+2x+3x^2+4x^3+5x^4+....。 
1/(1-x)=1+x+x^2+x^3+x^4+...是前面说过的。我们对这个式子等号两边同时求导数。于是,1/(1-x)^2=1+2x+3x^2+4x^3+5x^4+....。一步就得到了我们所需要的东西!不断地再求导数,我们同样可以得到刚才用复杂的牛顿二项式定理得到的那个结论(自己试试吧)。生成函数还有很多其它的处理手段,比如等式两边同时乘以、除以常数(相当于等式右边每一项乘以、除以常数),等式两边同时乘以、除以一个x(相当于等式右边的系数“移一位”),以及求微分积分等。神奇的生成函数啊。 
我们用两种方法得到了这样一个公式:1/(1-x)^n=1+C(n,1)x^1+C(n+1,2)x^2+C(n+2,3)x^3+...+C(n+k-1,k)x^k+...。这个公式非常有用,是把一个生成函数还原为数列的武器。而且还是核武器。 
 
接下来我们要演示如何使用生成函数求出Fibonacci数列的通项公式。 
Fibonacci数列是这样一个递推数列:f(n)=f(n-1)+f(n-2)。现在我们需要求出它的生成函数g(x)。g(x)应该是一个这样的函数: 
g(x)=x+x^2+2x^3+3x^4+5x^5+8x^6+13x^7+... 
等式两边同时乘以x,我们得到: 
x*g(x)=x^2+x^3+2x^4+3x^5+5x^6+8x^7+... 
就像我们前面说过的一样,这相当于等式右边的所有系数向右移动了一位。 
现在我们把前面的式子和后面的式子相加,我们得到: 
g(x)+x*g(x)=x+2x^2+3x^3+5x^4+8x^5+... 
把这最后一个式子和第一个式子好好对比一下。如果第一个式子的系数往左边移动一位,然后把多余的“1”去掉,就变成了最后一个式子了。由于递推函数的性质,我们神奇地得到了:g(x)+x*g(x)=g(x)/x-1。也就是说,g(x)*x^2+g(x)*x-g(x)=-x。把左边的g(x)提出来,我们有:g(x)(x^2+x-1)=-x。于是,我们得到了g(x)=x/(1-x-x^2)。 
现在的任务是要把x/(1-x-x^2)还原成通项公式。这不是我们刚才的1/(1-x)^n的形式,我们要把它变成这种形式。我们发现,1-x-x^2=[1-(1-√5)x/2]*[1-(1+√5)x/2] ((1-√5)/2和(1+√5)/2是怎么算出来的?显然它们应该是x^2-x-1=0的两个根)。那么x/(1-x-x^2)一定能表示成?/[1-(1-√5)x/2]+?/[1-(1+√5)x/2]的形式(再次抱歉,输入数学公式很麻烦,将就看吧)。这是一定可以的,因为适当的?的取值可以让两个分式通分以后分子加起来恰好为一个x。?取值应该是多少呢?假设前面一个?是c1,后面那个是c2,那么通分以后分子为c1*[1-(1+√5)x/2]+c2*[1-(1-√5)x/2],它恰好等于x。我们得到这样两个式子:常数项c1+c2=0,以及一次项-c1*(1+√5)/2-c2*(1-√5)/2=1。这两个式子足够我们解出c1和c2的准确值。你就不用解了,我用的Mathematica 5.0。解出来c1=-1/√5,c2=1/√5。你不信的话你去解吧。现在,我们把x/(1-x-x^2)变成了-(1/√5)/[1-(1-√5)x/2] + (1/√5)/[1-(1+√5)x/2]。我们已经知道了1/[1-(1-√5)x/2]的背后是以(1-√5)/2为公比的等比数列,1/[1-(1+√5)x/2]所表示的数列公比为(1+√5)/2。那么,各乘以一个常数,再相加,我们就得到了Fibonacci数列的通项公式:f(n)=-(1/√5)*[(1-√5)/2]^n + (1/√5)*[(1+√5)/2]^n。或许你会问,这么复杂的式子啊,还有根号,Fibonacci数列不都是整数吗?神奇的是,这个充满根号的式子对于任何一个自然数n得到的都是整数。熟悉用特征方程解线性递推方程的同学应该知道,以上过程实质上和找特征根求解没有区别。事实上,用上面所说的方法,我们可以求出任何一个线性齐次递推方程的通项公式。什么叫做线性齐次递推呢?就是这样的递推方程:f(n)等于多少个f(n-1)加上多少个f(n-2)加上多少个f(n-3)等等。Fibonacci数列的递推关系就是线性齐次递推关系。 
 
我们最后看一个例子。我们介绍硬币兑换问题:我有1分、2分和5分面值的硬币。请问凑出n分钱有多少种方法。想一下刚才的水果,我们不难得到这个问题的生成函数:g(x)=(1+x+x^2+x^3+...)(1+x^2+x^4+...)(1+x^5+x^10+..)=1/[(1-x)(1-x^2)(1-x^5)]。现在,我们需要把它变成通项公式。我们的步骤同刚才的步骤完全相同。我们把(1-x)(1-x^2)(1-x^5)展开,得到1-x-x^2+x^3-x^5+x^6+x^7-x^8。我们求出-1+x+x^2-x^3+x^5-x^6-x^7+x^8=0的解,得到了以下8个解:-1,1,1,1,-(-1)^(1/5),(-1)^(2/5),-(-1)^(3/5),(-1)^(4/5)。这个不是我解出来的,我还是用的Mathematica 5.0。不是我不想解,而是我根本不会解这个8次方程。这也是为什么信息学会涉及这些东西的原因:次数稍微一高,只好交给计算机解决了。于是,(1-x)(1-x^2)(1-x^5)=(1+x)(1-x)^3(1+(-1)^(1/5) x)()()() (省略不写了)。注意那个(1-x)^3。由于等根的出现,我们不得不把(1-x)^3所包含的(1-x)和(1-x)^2因子写进一会儿的分母里,不然会导致解不出合适的c来。你可以看到很多虚数。不过没关系,这些虚数同样参与运算,就像刚才的根式一样不会影响到最后结果的有理性。然后,我们像刚才一样求出常数满足1/(1-x)(1-x^2)(1-x^5)=c1/()+c2/(1-x)+c3/(1-x)^2+c4/(1-x)^3...+c8/()。这个解太复杂了,我用Mathematica解了几分钟,打印出了起码几十KB的式子。虽然复杂,但我确实是得到了通项公式。你有兴趣的话可以尝试用Mathematica解决一下1/[(1-x)(1-x^3)] (只有1分和3分的硬币)。解c的值时可以用SolveAlways[]函数。你可以亲眼见到,一个四五行的充满虚数的式子最后总是得到正确的整数答案。 
 
生成函数还有很多东西,推导Catalan数列啊,指数生成函数啊,之类的。我有空再说吧,已经5000多个字了。 
 
huyichen一直在问那道题。很显然,那道题目和上面的兑换硬币有些联系。事实上,很多与它类似的题目都和生成函数有关。但那个题却没有什么可以利用生成函数的地方(或许我没想到吧)。或许每个max的值有什么方法用生成函数解出来,但整个题目是不大可能用生成函数解决的。 
近来有个帖子问一道“DP天牛”题目的。那个题目也是这样,很多与它类似的题目都和DP有关,但那道题却不大可能动规。我总觉得它可以归约到装箱问题(考虑体积关系,最少要几个箱子才能把物品放完),而后者貌似属于NPC。或许我错了吧,现在没事就在研究理论的东西,很久没有想过OI题了,这方面的能力已经开始退化了。
 
数学家的故事:
 
数学家高斯的故事
 
高斯(Gauss 1777~1855)生于Brunswick,位于现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。
 
高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道着名的「从一加到一百」,终于发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。
 
老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什么东西可以教高斯了。
 
1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。
 
1791年高斯终于找到了资助人--布伦斯维克公爵费迪南(Braunschweig),答应尽一切可能帮助他,高斯的父亲再也没有反对的理由。隔年,高斯进入Braunschweig学院。这年,高斯十五岁。在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的「二次互逆定理」(Law of Quadratic Reciprocity)、质数分布定理(prime numer theorem)、及算术几何平均(arithmetic-geometric mean)。
 
1795年高斯进入哥廷根(G?ttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。
 
希腊时代的数学家已经知道如何用尺规作出正 2m×3n×5p 边形,其中 m 是正整数,而 n 和 p 只能是0或1.但是对于正七、九、十一边形的尺规作图法,两千年来都没有人知道。而高斯证明了:
 
一个正 n 边形可以尺规作图若且唯若 n 是以下两种形式之一:
 
1、n = 2k,k = 2, 3,…
 
2、n = 2k × (几个不同「费马质数」的乘积),k = 0,1,2,…
 
费马质数是形如 Fk = 22k 的质数。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是质数。高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。
 
1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理:
 
任一多项式都有(复数)根。这结果称为「代数学基本定理」(Fundamental Theorem of Algebra)。
 
事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。
 
在1801年,高斯二十四岁时出版了《算学研究》(Disquesitiones Arithmeticae),这本书以拉丁文写成,原来有八章,由于钱不够,只好印七章
 
美国的着名数学家贝尔(E.T.Bell),在他着的《数学工作者》(Men of Mathematics) 一书里曾经这样批评高斯:
 
在高斯死后,人们才知道他早就预见一些十九世的数学,而且在1800年之前已经期待它们的出现。如果他能把他所知道的一些东西泄漏,很可能现在数学早比目前还要先进半个世纪或更多的时间。阿贝尔(Abel)和雅可比(Jacobi)可以从高斯所停留的地方开始工作,而不是把他们最好的努力花在发现高斯早在他们出生时就知道的东西。而那些非欧几何学的创造者,可以把他们的天才用到其他力面去。
 
在1855年二月23日清晨,高斯在他的睡梦中安详的去世了。
 
数学的名言
  
  1、数学的本质在於它的自由。——康扥尔
  
  2、数学对观察自然做出重要的贡献,它解释了规律结构中简单的原始元素,而天体就是用这些原始元素建立起来的。——  开普勒
  
  3、数学方法渗透并支配着一切自然科学的理论分支。它愈来愈成为衡量科学成就的主要标志了。—— 冯纽曼
  
  4、数学家本质上是个着迷者,不迷就没有数学。—— 努瓦列斯
  
  5、当数学家导出方程式和公式,如同看到雕像、美丽的风景,听到优美的曲调等等一样而得到充分的快乐。——柯普宁
  
  6、没有任何问题可以向无穷那样深深的触动人的情感,很少有别的观念能像无穷那样激励理智产生富有成果的思想,然而也没有任何其他的概念能向无穷那样需要加以阐明。——希尔伯特
  
  7、数学是打开科学大门的钥匙。——培根
  
  8、数学是符号加逻辑。——罗素
 
以上是数学手抄报内容的简单抄写,希望可以帮到你。

数学手抄报内容原文地址:http://www.bp123.cn/zhishi/6140.html

带有版权标志作品版权均属本站奔跑网所有,其他作品来源网络,如有侵犯您的权益请按照《版权保护投诉指引》来信告知,本网将做删除处理。
奔跑网(儿童资源网)提示:本站资料《数学手抄报内容》完全免费,欢迎各位家长老师同学使用,如有问题可联系我们,竭诚为您提供更好更多的作品!